SPSS Review

11/09/2020

By Marrion Macandog

Agenda:

- 1. Data entry and organization
- 2. Conducting t-test analyses
- 3. Multiple linear regression

Importing files into SPSS

Can upload .csv or .xlsx

Delimiter: comma

Importing data from Qualtrics into SPSS

Go to your project on Qualtrics

- Data & Analysis
- Export Data

Downloading the data

- Common to use CSV, but we will opt for SPSS since that's the software we'll be using
- SPSS > Download

Imported Data into SPSS

Data View

Variable View

Prepping data in SPSS

- Recode missing values
- •Specifying "Measure"
- Merging data

Prepping data in SPSS: Missing Values for Multiple Choice Questions

Need to account for missing values so our analysis is accurate

SPSS assumes that the participant did not answer the question (hence, missing):

Statistics

	0,					
		If you checked "yes", please stat what other language(s) you can speak:(Mark all that applies.): Spanish	If you checked "yes", please stat what other language(s) you can speak:(Mark all that applies.): Vietnamese	If you checked "yes", please stat what other language(s) you can speak:(Mark all that applies.): Chinese	If you checked "yes", please stat what other language(s) you can speak:(Mark all that applies.):	If you checked "yes", please stat what other language(s) you can speak:(Mark all that applies.): Other – Text
N	Valid	3	1	0	0	5
	Missing	2	4	5	5	0
Mean		1.0000	1.0000			
Std. D	eviation	.00000				

Prepping data in SPSS: Missing Values Multiple Choice Questions

Transform > Recode into Same Variables

Data set with recoded missing variables:

Either 0 or 1, they either speak the language (1) or they don't (0)

The New Value will be 0

Prepping data in SPSS: Missing Values for Text Responses

Example: Q3_5_TEXT

Click the "..." in under the Missing column

For missing text responses, we traditionally use -9 at C-REAL

Prepping data: Adjusting our "Measure" column

The 3 options are Scale, Ordinal, and Nominal:

Scale: values represent ordered categories
with a meaningful metric, so that distance
comparisons between values are
appropriate

Example: score of a student in SAT exam

Ordinal: values represent categories with ranking

Example: 1=Highly satisfied, 2=satisfied, 3= neutral, 4= dissatisfied, 5= highly dissatisfied

Nominal: values represent categories with no ranking

Example: zip code or gender

Prepping data: Merging

Combining pre/post test data

Want to combine datasets

Prepping data: Merging different datasets

- 1. Have both datasets open
- Make sure matching variables have the same settings under "Variable View"

Prepping data: Merging different datasets

Data > Merge > Add Cases

Prepping data: Merging different datasets

Before:

After:

Prepping data: Merging pre/post test data

- 1. Have both datasets open
- 2. Make sure there's an identification variable; variable we will use to match the two datasets together
 - In this example, we have ID as the matching variable

Prepping data: Merging pre/post test data

Data > Merge Files > Add Variables

Prepping data: Merging pre/post test data

Before:

After:

	ø ID		🚜 Attendance	Score_pretest	var	var
1	661007	85	2	79		
2	926172	50	0	48		
3	1323956	93	3	88		
4	1328727	71	1	65		
5	1767276	51	0	46		
6	2331702	61	1	56		
7	3168177	67	0	66		
8	3316521	57	0	54		
9	3670778	63	1	56		
10	4303020	83	1	78		
11	4365151	88	3	83		
12	5396215	86	2	81		
13	6115282	89	2	84		
14	6133087	91	2	86		
15	7509550	67	1	61		
16	7988957	79	1	72		
17	8643086	95	3	90		
18	9169427	95	4	90		
19	9948278	80	1	75		
20	9975309	53	0	48		
21						
22						
23						

Any questions/comments so far?

SPSS How to: One Sample T-test

Analyze -> Compare Means -> One-Sample T Test

Test Value: Input the population mean

here

SPSS How to: One Sample T-test

Interpretation:

Our results indicate that the sample's time elapsed before sleep was significantly higher (M=7.354, SD=2.33) than the population average, t(99)=-4.691, p<.001.

SPSS How to: Independent Sample T-test

Analyze -> Compare Means -> Independent-Samples T Test

Grouping variable:

This variable should hold the groups we're comparing, in this care Q83 asked the respondents of their high school and the values represent what the high schools are.

2 = Katella High School

3 = Loara High School

SPSS How to: Independent Sample T-test

Group Statistics

	School you attend:	N	Mean	Std. Deviation	Std. Error Mean
How likely are you to go to	Katella High School	579	4.24	.856	.036
college? (Mark one.)	Loara High School	398	4.17	.908	.045
Are you knowledgeable about	Katella High School	586	.67	.472	.019
financial aid for college and the cost and benefits to you of going to college	Loara High School	403	.78	.417	.021

Descriptive statistics

Mean, standard deviation, N

SPSS How to: Independent Sample T-test

Independent Samples Test

Which results do we report?

First we check the **Levene's Test** sig. value.

If it is BELOW .05 (significant), we look at the equal variances NOT assumed.

If it is ABOVE .05 (not significant), we look at the equal variance assumed.

Interpretation:

There is no significant differences between the high schools in their likeliness to go to college, t(975) = 1.138, p > .05.

There is a significant difference between Katella High School (M=.67, SD=.472) and Loara High School (M=.78, SD=.417) in their knowledge about college costs, t(927.25) = -3.843, p < .001.

SPSS How to: Paired Samples T-test

Analyze > Compare Means > Paired-Samples T Test

Output - Paired Samples t-test

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Hands-on activities help me learn	3.0909	22	.52636	.11222
	Hands-on activities help me learn	3.3636	22	.49237	.10497
Pair 2	I am confident in my ideas.	3.2174	23	.51843	.10810
	I am confident in my ideas.	3.3478	23	.57277	.11943
Pair 3	I believe I have the tools to practice leadership.	3.1739	23	.57621	.12015
	I believe I have the tools to practice leadership.	3.3913	23	.49901	.10405
Pair 4	l believe in myself.	3.0870	23	.59643	.12436
	I believe in myself.	3.4348	23	.50687	.10569

Interpretation:

Our sample of students indicated significantly more confidence after the professional development workshop (M=3.344, SD=.507) in comparison to before (M=3.087, SD=.596), t(33) = -2.336, p < .05.

	Paired Differences								
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Hands-on activities help me learn - Hands-on activities help me learn	27273	.55048	.11736	51680	02866	-2.324	21	.030
Pair 2	I am confident in my ideas I am confident in my ideas.	13043	.54808	.11428	36744	.10657	-1.141	22	.266
Pair 3	I believe I have the tools to practice leadership I believe I have the tools to practice leadership.	21739	.59974	.12505	47674	.04195	-1.738	22	.096
Pair 4	l believe in myself l believe in myself.	34783	.71406	.14889	65661	03904	-2.336	22	.029

Any questions/comments so far?

SPSS How to: Multiple Linear Regression

Analyze > Regression > Linear..

Question: What factors predict for job satisfaction? And to what extent?

SPSS How to: Multiple Linear Regression

Output: MLR

R = correlation coefficient
Interpretation: There was 69.5%
correlation between X, Y, Z (predictor)
variables and A (criterion/dependent)
variable..

R-Square = coefficient of determination; proportion of variance explained by the independent variables Interpretation: Our independent variables account for 48.3% of the variability in our dependent variable...

Adjusted R-Square = only accounts for significant variables in the model, which is why it's always lower than Rsquare

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.695 ^a	.483	.424	17.631

a. Predictors: (Constant), My work is interesting, I have good labor conditions, My workplace is good, I have nice colleagues, I have a nice supervisor

ANOVA^a

Model		Sum of Squares	df	F	Mean Square	F	Sig.
1	Regression	12761.123		5	2552.225	8.210	.000 ^b
	Residual	13677.757		44	310.858		
	Total	26438.880		49			

- a. Dependent Variable: I'm happy with my job
- Predictors: (Constant), My work is interesting, I have good labor conditions, My workplace is good, I have nice colleagues, I have a nice supervisor

ANOVA results indicate if the model is a good fit.

Interpretation: The table shows that the independent variables statistically significantly predict the dependent variable, F(5, 55) = 8.210, p < .001

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B		
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	
1	(Constant)	5.854	10.120		.578	.566	-14.541	26.250	
	I have a nice supervisor	.117	.176	.097	.664	.510	238	.472	
	I have good labor conditions	.363	.114	.369	3.182	.003	.133	.593	
	I have nice colleagues	.103	.145	.098	.707	.483	190	.396	
	My workplace is good	.256	.139	.225	1.836	.073	025	.537	
	My work is interesting	.334	.126	.299	2.660	.011	.081	.587	

a. Dependent Variable: I'm happy with my job

Output: MLR

Model Summary

Model	R R Square		Adjusted R Square	Std. Error of the Estimate		
1	.695 ^a	.483	.424	17.631		

a. Predictors: (Constant), My work is interesting, I have good labor conditions, My workplace is good, I have nice colleagues, I have a nice supervisor

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12761.123	5	2552.225	8.210	.000 ^b
	Residual	13677.757	44	310.858		
	Total	26438.880	49			

- a. Dependent Variable: I'm happy with my job
- b. Predictors: (Constant), My work is interesting, I have good labor conditions, My workplace is good, I have nice colleagues, I have a nice supervisor

Coefficientsa

		hstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	5.854	10.120		.578	.566	-14.541	26.250
	I have a nice supervisor	.117	.176	.097	.664	.510	238	.472
	I have good labor conditions	.363	.114	.369	3.182	.003	.133	.593
	I have nice colleagues	.103	.145	.098	.707	.483	190	.396
	My workplace is good	.256	.139	.225	1.836	.073	025	.537
	My work is interesting	.334	.126	.299	2.660	.011	.081	.587

a. Dependent Variable: I'm happy with my Job

Our regression equation:

Job satisfaction = 5.854 + .117*supervisor + .363*conditions + .103*colleagues + .256*workplace + .334*interest

MLR: Finding the best model

			Coef	ficients"				
		Unstandardize	Standardized Coefficients			95.0% Confidence Interval for B		
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	5.854	10.120		.578	.566	-14.541	26.250
	I have a nice supervisor	.117	.176	.097	.664	.510	238	.472
	I have good labor conditions	.363	.114	.369	3.182	.003	.133	.593
	I have nice colleagues	.103	.145	.098	.707	.483	190	.396
	My workplace is good	.256	.139	.225	1.836	.073	025	.537
	My work is interesting	.334	.126	.299	2.660	.011	.081	.587

a. Dependent Variable: I'm happy with my job

Which factors contribute the most for predicting job satisfaction?

Not all our predictors are significant; we can further simplify our model to be better fit

- Stepwise Regression: Remove or add predictor that would result in model with the best fit
- Backward Regression: Adds all predictors then sequentially removed
- Forward: Each predictor is added sequentially

Output: Stepwise Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.497 ^a	.247	.232	20.362
2	.614 ^b	.377	.351	18.719
3	.680 ^c	.462	.427	17.587

- a. Predictors: (Constant), I have good labor conditions
- b. Predictors: (Constant), I have good labor conditions, My work is interesting
- c. Predictors: (Constant), I have good labor conditions, My work is interesting, My workplace is good

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6537.379	1	6537.379	15.767	.000 ^b
	Residual	19901.501	48	414.615		
	Total	26438.880	49			
2	Regression	9969.814	2	4984.907	14.226	.000 ^c
	Residual	16469.066	47	350.406		
	Total	26438.880	49			
3	Regression	12211.599	3	4070.533	13.161	.000 ^d
	Residual	14227.281	46	309.289		
	Total	26438.880	49			

- a. Dependent Variable: I'm happy with my job
- b. Predictors: (Constant), I have good labor conditions
- c. Predictors: (Constant), I have good labor conditions, My work is interesting
- d. Predictors: (Constant), I have good labor conditions, My work is interesting, My workplace is good

Our regression equation:

Job satisfaction = 10.959 + .408*conditions + .364*workplace + .337*interest

Predictors: Labor conditions, interesting work, and good workplace

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	40.913	7.099		5.763	.000
	I have good labor conditions	.489	.123	.497	3.971	.000
2	(Constant)	21.113	9.089		2.323	.025
	I have good labor conditions	.444	.114	.451	3.890	.000
	My work is interesting	.406	.130	.363	3.130	.003
3	(Constant)	10.959	9.335		1.174	.246
	I have good labor conditions	.408	.108	.415	3.778	.000
	My work is interesting	.364	.123	.326	2.964	.005
	My workplace is good	.337	.125	.296	2.692	.010

a. Dependent Variable: I'm happy with my job

THE END © Any questions/comments?